Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 6(1): 8, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716313

RESUMO

BACKGROUND: Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process. RESULTS: This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (http://www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin. CONCLUSIONS: Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects.

2.
Nature ; 450(7170): 712-6, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046409

RESUMO

Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.


Assuntos
Restrição Calórica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sirtuínas/agonistas , Acetilação , Sítio Alostérico , Animais , Glicemia/metabolismo , Domínio Catalítico , Linhagem Celular , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Drosophila melanogaster , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Insulina/metabolismo , Insulina/farmacologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Resveratrol , Sirtuína 1 , Sirtuínas/metabolismo , Estilbenos/química , Estilbenos/farmacologia
3.
PLoS Biol ; 5(10): e261, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17914901

RESUMO

Calorie restriction (CR) robustly extends the lifespan of numerous species. In the yeast Saccharomyces cerevisiae, CR has been proposed to extend lifespan by boosting the activity of sirtuin deacetylases, thereby suppressing the formation of toxic repetitive ribosomal DNA (rDNA) circles. An alternative theory is that CR works by suppressing the TOR (target of rapamycin) signaling pathway, which extends lifespan via mechanisms that are unknown but thought to be independent of sirtuins. Here we show that TOR inhibition extends lifespan by the same mechanism as CR: by increasing Sir2p activity and stabilizing the rDNA locus. Further, we show that rDNA stabilization and lifespan extension by both CR and TOR signaling is due to the relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the nucleus, where they increase expression of the nicotinamidase gene PNC1. These findings suggest that TOR and sirtuins may be part of the same longevity pathway in higher organisms, and that they may promote genomic stability during aging.


Assuntos
Restrição Calórica , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/fisiologia , DNA Ribossômico/genética , Expectativa de Vida , Proteínas Serina-Treonina Quinases , Transdução de Sinais
4.
Methods Mol Biol ; 371: 97-109, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17634577

RESUMO

The diet known as caloric restriction (CR) has been known for 70 yr to extend the life span of rodents (1). CR can also extend life span in a broad range of other species as well, from unicellular organisms (2,3), to invertebrates (4) and most likely primates, as well (5). The budding yeast Saccharomyces cerevisiae is a useful model for the study of pathways that determine life span in response to dietary intake. Here, we describe how to calorically restrict yeast, the methods used to determine the replicative life span of single yeast "mother" cells and measure recombination frequency at the rDNA locus, and how to isolate and analyze the circular forms of DNA known as extrachromosomal rDNA circles (ERCs), which are a major cause of aging in S. cerevisiae (6-8).


Assuntos
Restrição Calórica , DNA Fúngico/metabolismo , DNA Ribossômico/metabolismo , Longevidade/fisiologia , Modelos Biológicos , Recombinação Genética/fisiologia , Saccharomyces cerevisiae/metabolismo , Animais , Humanos , Locos de Características Quantitativas/fisiologia
5.
Science ; 309(5742): 1861-4, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16051752

RESUMO

Calorie restriction (CR) extends the life span of numerous species, from yeast to rodents. Yeast Sir2 is a nicotinamide adenine dinucleotide (NAD+-dependent histone deacetylase that has been proposed to mediate the effects of CR. However, this hypothesis has been challenged by the observation that CR can extend yeast life span in the absence of Sir2. Here, we show that Sir2-independent life-span extension is mediated by Hst2, a Sir2 homolog that promotes the stability of repetitive ribosomal DNA, the same mechanism by which Sir2 extends life span. These findings demonstrate that the maintenance of DNA stability is critical for yeast life-span extension by CR and suggest that, in higher organisms, multiple members of the Sir2 family may regulate life span in response to diet.


Assuntos
Restrição Calórica , Longevidade , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sirtuínas/genética , Sirtuínas/fisiologia , DNA Fúngico/genética , DNA Ribossômico/genética , Deleção de Genes , Inativação Gênica , Genes Fúngicos , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Mutação , Niacinamida/farmacologia , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Sirtuína 2
6.
Science ; 302(5653): 2124-2126, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14605207
7.
Microbiol Mol Biol Rev ; 67(3): 376-99, table of contents, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12966141

RESUMO

When it was first proposed that the budding yeast Saccharomyces cerevisiae might serve as a model for human aging in 1959, the suggestion was met with considerable skepticism. Although yeast had proved a valuable model for understanding basic cellular processes in humans, it was difficult to accept that such a simple unicellular organism could provide information about human aging, one of the most complex of biological phenomena. While it is true that causes of aging are likely to be multifarious, there is a growing realization that all eukaryotes possess surprisingly conserved longevity pathways that govern the pace of aging. This realization has come, in part, from studies of S. cerevisiae, which has emerged as a highly informative and respected model for the study of life span regulation. Genomic instability has been identified as a major cause of aging, and over a dozen longevity genes have now been identified that suppress it. Here we present the key discoveries in the yeast-aging field, regarding both the replicative and chronological measures of life span in this organism. We discuss the implications of these findings not only for mammalian longevity but also for other key aspects of cell biology, including cell survival, the relationship between chromatin structure and genome stability, and the effect of internal and external environments on cellular defense pathways. We focus on the regulation of replicative life span, since recent findings have shed considerable light on the mechanisms controlling this process. We also present the specific methods used to study aging and longevity regulation in S. cerevisiae.


Assuntos
Genoma Fúngico , Heterocromatina/fisiologia , Longevidade/fisiologia , Saccharomyces cerevisiae/fisiologia , Regulação Fúngica da Expressão Gênica , Heterocromatina/genética , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Longevidade/genética , Modelos Moleculares , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/fisiologia
8.
Nature ; 423(6936): 181-5, 2003 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-12736687

RESUMO

Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms.


Assuntos
Restrição Calórica , Niacinamida/metabolismo , Nicotinamidase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metabolismo Energético , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Resposta ao Choque Térmico , Histona Desacetilases/metabolismo , Longevidade/genética , Longevidade/fisiologia , NAD/metabolismo , Niacina/metabolismo , Nicotinamidase/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/metabolismo
9.
J Biol Chem ; 277(21): 18881-90, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11884393

RESUMO

Yeast deprived of nutrients exhibit a marked life span extension that requires the activity of the NAD(+)-dependent histone deacetylase, Sir2p. Here we show that increased dosage of NPT1, encoding a nicotinate phosphoribosyltransferase critical for the NAD(+) salvage pathway, increases Sir2-dependent silencing, stabilizes the rDNA locus, and extends yeast replicative life span by up to 60%. Both NPT1 and SIR2 provide resistance against heat shock, demonstrating that these genes act in a more general manner to promote cell survival. We show that Npt1 and a previously uncharacterized salvage pathway enzyme, Nma2, are both concentrated in the nucleus, indicating that a significant amount of NAD(+) is regenerated in this organelle. Additional copies of the salvage pathway genes, PNC1, NMA1, and NMA2, increase telomeric and rDNA silencing, implying that multiple steps affect the rate of the pathway. Although SIR2-dependent processes are enhanced by additional NPT1, steady-state NAD(+) levels and NAD(+)/NADH ratios remain unaltered. This finding suggests that yeast life span extension may be facilitated by an increase in the availability of NAD(+) to Sir2, although not through a simple increase in steady-state levels. We propose a model in which increased flux through the NAD(+) salvage pathway is responsible for the Sir2-dependent extension of life span.


Assuntos
Núcleo Celular/metabolismo , NAD/metabolismo , Saccharomyces cerevisiae/fisiologia , Meios de Cultura , DNA Ribossômico/metabolismo , Inativação Gênica , Genes Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...